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BUCKLING IN AN ELASTIC ROD UNDER A TIME-VARYING LOAD 

A. V. Markin 

UDC 624.074.4 

A rod subject to a steady heavy load [i] may be replaced by a system with one degree of 
freedom provided that the motion is examined over a sufficiently long time interval [2]. 
The rod has to be approximated by a system with a larger number of degrees of freedom [3] if 
the strong load is aperiodic. 

The following equation describes the buckling in a homogeneous elastic rod subject to 
an alternating heavy load: 

E[w~xxx + N(t)Wxx + pFwit = / ( x ) ,  0 <~ x ~ L, t > O, (1) 

where w is the normal deflection, x and t are the longitudinal coordinate and time, L is rod 
length, p is density, F and I are the constant cross-sectional area and bending rigidity of 
the rod, E is Young's modulus, N(t) is the given longitudinal force (Fig. l), and f(x) is a 
function determined by the given small perturbations or imperfections. 

Here N(t) is a continuous monotonically increasing function of time, which increases 
from zero and runs successively through the critical values for the static case, N(t) = 
m2Ne , N e = ~2EIL-= (m = i, 2, ...). 

We assume that the hinge-supported rod is at rest before loading; then the initial and 
boundary conditions take the form 

w=wi = 0 (t=O, 0<~ x<~ L), w = u,~ = 0 
(x : O,L, t > O ) .  (2) 

The solution to (i) and (2) is sought as 

w = ~ q~(t)sin max (3) 
m = l  L 
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We substitute (3) into (I) and perform appropriate steps to get qm(t) in terms of an 
equation subject to zero initial conditions: 

" o 2 t 
q,,  - -  k ' a m  (t) qm = ],~, q,~ = q~  = O, t = 0 (ra = 1, 2 , . . . ) ,  

= p- -~ ,  O~m (t) = - -  m 2 [rrt 2 - -  ~]2 ( /)] ,  Ti2 (t)  - -  N (t_____J, 
- -  7V e 

L 
2 i' m ~ X I r a =  p---f~,~. / (X)  Sill  - - - s  

o 

(4) 

where q(t) characterizes the extent of the loading, N e is the Euler load, and % is a large 
parameter. 

m2Ne~ a As N(t) increases from zero up to the coefficient ~m for form m remains negative; 
the instant t = tm, when N(t) = maNe and ~n = 0, is a turning point for (4) (Fig. i). For 
loads N(t) > m2Ne, the sign of C~m 2 is positive. 

The Cauchy problem of (4) for the inhomogeneous differential equation describes the 
amplitude of the motion as a function of time. 

An equation analogous to (4) has been derived previously [4], which related to a load 
applied to a rod that increased in proportion to time. An asymptotic analysis has also been 
given [3] for an elastic rod subject to an aperiodic load, which varied slowly, in which 
case the equation for the amplitudes did not have turning points. Here we examine the mo- 
tion of a rod for the general case of monotonically increasing loading, where there are 
turning points in (4). 

The asymptote for the eigenvalues has been derived [5] for homogeneous second-order 
differential equations of the type of (4) containing ~m2(t) and having first-order zeros for 

large; the essence of the method used to define the asymptotic representation is that the 
solution to the particular equation is expressed in terms of the solutions to a standard 
equation that represents precisely the behavior of the coefficients, namely, zeros of the 
same order. The standard-equation method is almost the same as the WBC method. 

The standard-equation method is applied by means of a time shift in the loading func- 
tion; we introduce the new variable r = t -- t m, whereupon all turning points shift to the 
one point �9 = 0; the homogeneous equation for (4) is then 

22 
- k = o .  ( 5 )  

As our standard equation corresponding to (5) we take the Airy equation 

V~--(s--tm) V m - - O ,  V m = V r e ( s - t i n ) .  ( 6 )  

The Airy functions Vm~ , and Vm2 are linearly independent solutions to (6) and satisfy 
the initial conditions 

V ~  x (0) = i ,  Vm,  (0) = O, V~2 (0) = P ( t / 3 ) / 3 ~ / ~ F  (2 /3) ,  Vmz(O) = i 

and the conditions at infinity 

Vml  ~ oo , Vm2 ~ 0 for s - ~ o o .  
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as 

The linearly independent solution to (5) is sought in terms of the Airy function Vm, 

(7) q,~('~) = A m(*)V.n[q~m(~)]. 

We substitute (7) into (5) to get 

V" '2 ~ 2 �9 ' " Am [ ..q m + - -  %'amVm] V~t [2Amain + Amain] + VmlAL = O. (8) 

E q u a t i o n  (6) a l l o w s  us  to  r e p r e s e n t  t h e  e x p r e s s i o n  i n  b r a c k e t s  f o r  Am(T) a s  

,, ,o 2 2 '2 VmtfPm- )~ (zmVml = Vml (~ra(~m -- ~,2(Z2t) . 
Therefore, we put 

"2 ~o 2 
~mr = ~'a~, (9) 

and eliminate the terms Containing X a in (8); we solve (9) to get 

q)m "~-~2130)m, " i/2,. ' a m '  COrn - 2 - 0  

We e q u a t e  t h e  e x p r e s s i o n  f o r  V~x t o  z e r o  t o  e l i m i n a t e  t h e  t e r m s  o f  o r d e r  X a/3  in  ( 8 ) ;  
t h i s  g i v e s  t h e  f o l l o w i n g  e q u a t i o n  f o r  Am(T):  

wh ich  i t s e l f  g i v e s  

A L _  
Am 2q/m 2o)" m' ( o/m ) '/"" 

A n o t h e r  l i n e a r l y  i n d e p e n d e n t  s o l u t i o n  to  (5) i s  s o u g h t  i n  t e r m s  o f  t h e  A i r y  f u n c t i o n  
Vm2 a s  

qm2=Bra(%)Vm2[(Pm(~)] (Bm('~)= Cm2(O)'m)-u2 ). 

The expression in parentheses for Bm(T) is derived by repeating the above arguments; 
~m(T) as before satisfies (9). 

As A~ # 0 and ~ # 0, unbalanced terms of order X appear to power zero in (8), while 
terms of order %2/a and ~2 are eliminated. The general asymptotic solution to (5) is then 

qm (%) : Cml (O)'m)--t/2vml [~2/3fom] + Cm2 (~ {~2!3(0m] "-~-0 ( ~ ) . ( ~0 ) 

The known general solution to (i0) for the homogeneous differential equation of (5) al- 
lowsus to find byvarlation the solution to the inhomogeneous problem of (4), which takes the 
following form in terms of the old variables: 

v,.= [XmOm] ' "t,.V,.,[XzZ3%ldtz - [Xz/3, ml ' V 'Xmo) ] II r Irn ml [ mJ dt 
qm(t)= %2/3((~ 1/2 3 (o)k) 1/2 ~ ~2/3((')~n)t/2 J ~ - -  

0 tm 
t 

Vml [~,2/30)m] t~m /m Vm2_ [~,2/30) m] dt Vml [~2/30)m] ~ fmVm~ [~,2/3toml dt 
- -  ~'2/3(('0k)1/2 O (O)m)'/2 X2/3((Om),/2 J ((OS)t/2 --~ O( ' l ) .  ( l l )  

0 fm 

H e r e  t h e  q u a n t i t y  X 213 i n  t h e  d e n o m i n a t o r  i s  t h e  v a l u e  o f  t h e  W r o n s k i a ~  f o r  t h e  f u n c t i o n s  
Vmx(~)-t/2, and Vm2(~)-l/2 [5]: 

= ] - L(<oW .> ] 
Formula (ll) describes the variation in the amplitudes; the motion is oscillatory as 

the load increases from zero up to N~ = N e (t < t~), but after passage through the turning 
point t = t, the amplitude for the first motion increases exponentially. The rod moves in 
the first form and vibrates in the second form with amplitude q2 until N(t) attains N2 = 
4Ne (t < t2); after the second point t = ta, the amplitude of the second form of motion also 
increases exponentially. New forms of exponential motion appear when the load exceeds the 
corresponding static critical values. The more rapidly the load is applied, the more 
numerous the number of exponential forms of motion, and the more numerous the terms in (3) 
that have to be retained. 
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Therefore, we represent the main part of the solution for the motion when the load 

varies substantially as 

w = ~ q,, (0 sin , , , ~x  ( 1 2 )  m=! L"  

The f u n c t i o n s  qm(t)  a r e  d e f i n e d  by ( 1 1 ) ;  t h e  number o f  te rms  m, i s  e q u a l  to  t he  number 
o f  t he  c r i t i c a l  E u l e r  l o a d  a t t a i n e d  by N ( t ) ,  name ly ,  m, = E max J N ( t ) / N  e ,  where  E r e p r e s e n t s  
t h e  i n t e g e r  p a r t .  

We now e s t i m a t e  the  c r i t i c a l  b u c k l i n g  t i m e .  I t  has  been  s u g g e s t e d  [6] t h a t  t h e  s t a b i l -  
i t y  l o s s  in  an e l a s t i c  s h e l l  s u b j e c t  to  a v a r y i n g  l o a d  may be e v a l u a t e d  f rom t h e  a m p l i f i c a -  
t i o n  factor for the initial irregularities. This factor is to be calculated for all forms 
of motion. The maximum value for some form defines the onset of stability loss. 

We now consider the critical parameters: loading rate, buckling time, and amplification 
factor for an elastic rod subject to a slowly varying aperiodic load [3]. A difference from 
the method of [6] was that the form of stability loss chosen in [3] was a special one such 
that the coefficient was maximal in the exponent [i]. This represents a deliberate over- 
estimate of the rate of increase of the deflection, which itself provides a lower bound to 
the critical time and critical loading rate. Practical calculations by the method of [3] 
are simpler, since there is no need to calculate the entire amplification curve. In the 
particular case of a constant heavy load, it becomes particularly simple to calculate the 
critical parameters [2]. 

We use the method of [3] with (ii) and (12) to estimate the critical buckling time; a 
point about (12) is that each term consists of two factors, in which the second factor has 
a modulus not exceeding one. From (12) we have 

lwl < ~ Iq~I (13) 
m=i 

The first term in (ii) tends to zero for t > t m sufficiently large, since it contains 
an exponential with a large negative exponent before the definite integral. 

We compare the second and fourth terms by replacing the Airy functions by the first 
terms in the asymptotic representations; the main term comes from the exponential if t is 
large (we omit factors less than i). We have 

t 

J, = exp (-- 
# 

9 3/o~ 
% 

t m 
t 

2 3/2 2 3/2 

tm 

We d e r i v e  t he  i n t e g r a l s  from t h e  t r a p e z i u m  f o r m u l a :  

= [~.~ ( t ) -  ~ 2 ( G ) l } l ( t - -  t~)j2, J1 [1 + exp {(--2/3)~ 3/2 

J2 [1 + exp {(2/3)~[o~2(t! 3/2 = -- ~m (tm)]}](t -- t~)/2. 

These expressions show that the second term in (Ii) remains bounded as the time increases, 
whereas the force increases; as the sign of the second term differs from the signs of the 
third and fourth terms, we delete the second term and strengthen inequality (13): 

]wj < ~, Iq=l < ~. cmVm~[ Vmodt. (14) 
m = i  m = l  ~'" " 

H e r e  Cm i s  a c o n s t a n t  d e t e r m i n e d  by t h e  c o n d i t i o n s  o f  t h e  p rob l em.  We assume t h a t  the  
initial perturbations corresponding to various forms of motion are of the same order of 
smallness; we replace the Airy function in (14) by the first term in the asymptotic expan- 
sion and use the properties of the definite integral to get the normal deflection at time 
t, as 
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m~ [ t. m. 
IW(t,)l~< ~ Cmexpl.5% yamdtmaxlVm2]t, < m , C t ,  ~ expa , ( t , - - tm)<m~Ct ,  oxp(m,a,t,),  (15) 

m=t I tm m=l 

C = 2, I maxlc~l, ~ ,  = 0.75~ max ~'~. 

The factor m,exp (m,~,t,) in (15) appears as a result of the estimate made for Vmx: term m, 
in the series, exp (m,~,t,), is summed m, times. The m,Ct, factor represents an estimate 
of the integral with the coefficient from (14). 

The critical time t, is defined by 

maxlm(t,)! = Wo, (16) 

if the maximum deflection is specified. 

We substitute the estimate of (15) into (16) to get t, as 

w o = m~Ct, exp (m,~ , t , ) .  (17) 

This estimate for the critical buckling time is a complicated function, which differs 
from the result of [2, 3], since here we envisage a substantially varying load, and conse- 
quently the equation for the amplitudes has a turning point. 

The right side of (17) is a rapidly increasing function; the coefficient in the expo- 
nent and the preexponential factor contain the large quantity m,, which characterizes the 
loading rate. Therefore, we have lower bounds to the critical time, as in [2, 3]. Further, 
the estimate of (17) becomes even lower as the loading rate increases, which improves the 
reliability of practical calculations. 

We have derived (ii) above for the amplitude as a function of time; Fig. 2 shows cal- 
culations on the amplitude for the following values of the parameters: L = 800 mm, diameter 
i0 mm, ~ = 193 see -x , Ne = 151.2kgf, loading law N(t) = 1.7 exp 500 t; the calculations have 
been based on the tables of [7]. 

The ordinate is a dimensionless parameter equal to the ratio of qm to the initial de- 
flection fm' while the abscissa is time t. Curves 1-3 correspond to m of i, 2, and 3. There 
is a marked increase in the deflection after the turning point, and the various forms of 
motion diverge at different rates. The larger numbers correspond to larger rates of increase 
in the amplitude. The amplitudes are of the same order, so all must be incorporated. There- 
fore, this system with distributed parameters may be represented as one with a large but 
finite number of degrees of freedom when the load increases monotonically. 
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